Thermal Infrared 7 April, Mon, 9:40 AM

Andy French

- I. Introduction
 - a. Estimator of plant transpiration
 - b. Indicator of plant water stress
 - c. Easy to collect, log and non-destructive
 - d. Equipment moderately expensive, durable, accurate
- II. Thermal Infrared Basics
 - a. Emitted radiation, wavelength/radiance relationships, emissivity
- III. Thermal Infrared Sensor Performance & Characteristics
 - a. Thermocouple, thermopile, microbolometers, thermistors
 - b. Infrared Thermometer (IRT) Models available: Apogee, Everest, Fluke, etc. costs, accuracy, precision
 - c. Wavelength sensitivity, atmospheric window
 - d. Time scales, accuracy, uncertainty: time of day, measurement frequency, weather (clouds, wind, humidity)
 - e. View angle, plant vs. soil temperatures
 - f. Logging: microvolt sensitivity, time, location
 - g. Ancillary data: air temperature, humidity, windspeed,
- IV. Data analysis
 - a. Atmospheric correction
 - b. Maximizing signal: Plot averaging, reference temperature checks, temperature differencing to remove bias, diurnal correction
 - c. Extensions: compute stress index, ET estimate
- V. Conclusions
 - a. Stress response detection with thermal sensors
 - b. Durable, accurate, modest cost
 - c. Select high quality sensors with known calibration
 - d. Select 8-14 mum sensor window
 - e. Select field-of-view to match platform needs and signal/noise
 - f. Sensor response time < 1 s
 - g. Sensor logger requirements
 - h. Apply sky radiation correction
 - i. Consider temperature and time-temperature differencing to reduce errors
 - j. Collect reference temperatures at beginning and end of survey
 - k. Minimize data collection period
 - l. Watch the weather for uneven cloudiness and air temperature
 - m. For variety evaluation use best estimate of plant temperature as first step, then can consider CWSI, ET estimates afterwards

References

www.apogeeinstruments.com/infraredradiometer

www.everestinterscience.com

Agaus, J.L, and Cairns, J.E. 2014. Field high-throughput phenotyping: the new crop breeding frontier, *Trends in Plant Science* 19(1): 52-61.

Fuchs, M. and Tanner, C.B. Infrared Thermometry of Vegetation, 1966. *Agronomy J.* 58:597-601.

Table 1. Characteristics of example thermal infrared sensors.

Manufacturer	Apogee Instruments	Everest Interscience	Omega
Sensor Name	Infrared radiometer	Enviro-Therm	Infrared
			thermocouple
Approximate	700-800		300
Cost (USD)			
Part Number	SI-xxx; 12 variations		OS36/80F
Web Site	www.apogeeinstrument	www.everestinterscience	www.omega.co
	<u>s.com</u>	<u>.com</u>	<u>m</u>
Temperature range	-30 to 60 °C		10 to 49 °C
Accuracy	0.2 °C	0.25 °C	0.8 c
Response time	0.2 s		0.08 s
Field-of-View	22°-44° circular;		60 °
	64°x26° rectangular		
Output	20-60 μV/°C; analog or	Digital, digital to analog	
	digital	(DAC)	
Power supply	2.5 V		None
Sensor type	Thermopile/thermistor		Thermocouple
			(type K or T
			typical, also J,
			E)
Spectral range	8-14 μm		6.5-14 μm
Logging	mV datalogger or SDI- 12		mV datalogger
Cabling	5 m shielded twisted		2.4 m PFA
	pair, 6 leads		coated, 3 leads
Dimensions	2.3 cm diameter, 6.0 cm	5cm length?	1.27 cm
	length		diameter, 4.45
			cm length
Housing shape	Cylindrical	Cylindrical	
Weight (g)	190 g with cable		15 g (sensor
			only)
Operating	-55 to 80 °C; 0-100%		-18-85 °C
environment	RH non-condensing		
Comments	Selection by field-of-		Short response
	view, signal output type		time, no power
	(analog or digital)		needed, wide

Cl	heck for dust	field of view,
		narrow
		calibration
		range, need
		stable cold
		iunction